
HTML+ CSS
PRINCIPLES
Getting started with web
design the right way

HTML : a brief history

❶
1960s : ARPANET is developed... It

is the first “packet-switching”

network using TCP/IP protocol and is

a precursor to World Wide Web.
http://en.wikipedia.org/wiki/ARPANET

HTML : a brief history

❷
HTML language is invented in

early 1980s

http://www.w3.org/History.html

HTML : a brief history

❸
In the 1980s desktop computing

also became a much more

common tool for businesses and

consumers.

HTML : a brief history

❹
1989-90 the “World Wide Web” is

developed by Tim Berners-Lee

along with the first visual web

browser…
http://www.w3.org/History/1989/proposal.html

The idea:

The browser:

HTML : a brief history

❺
More users + new addition of

commercial uses created more

complexities and greater need for

standards.

HTML : a brief history

➅
2002: XHTML was developed for

use with stricter standards and a

more flexible framework to

incorporate XML data files.

HTML : a brief history

➆
Then this started happening:

HTML : a brief history

➇
2008: HTML5 is introduced. It

moves away from xml but offers

database integration, semantic

markup, javascript integration, and

and better video capabilities.

HTML

Hypertext Markup Language

Current version of HTML is HTML5. Prior to

HTML5 the standard was XHTML, which was

the first to offer strict semantic markup and

a focus on separating “presentation from

structure.”

WHAT HTML
LOOKS LIKE
display view vs. code view

HTML > display

Here’s what we
see as a viewing
audience:

HTML > code

Here’s what we
do as web
designers and
developers:

HTML > where to start

HTML is based on the use of TAGs.

TAGs are the beginnings and endings
of element declarations. They tell the
browser how to process the given data.

HTML > how to start

The basic anatomy of a TAG:

<tagname>Blah blah blah</tagname>

(BTW, this is a dummy, not-real example)

HTML > how to start

It could also look like this:

<tagname>

 Blah blah blah
</tagname>

(Still not-real)

HTML > how to start

It could also look like this:

<tagname>

 Blah blah blah
</tagname>

Almost all tags have an opening AND closing tag.
The only difference is that the closing tag starts
with a “/” forward-slash.

HTML > tag examples

<p>This is where you type the paragraph
text you want to show up on the
screen.</p>

(This is a real example of a “paragragh” tag)

HTML > tag examples

<h1>I’m the most important heading</h1>
<h2>I’m important heading level #2</h2>
…
<h6>Headings go down to a level #6</h6>

(These are real examples of “heading level” tags.)

HTML > tag examples

 List item one goes here
 List item two goes here

(These are real examples of “unorded list” and
“list item” tags.)

HTML > tag examples

…and the TAG list goes on:

 <html>
<head>
<title>
<base>
<link>
<meta>
<style>
<body>
<section>
<nav>
<article>

<aside>
<header>
<footer>
<address>
<p>
<hr>
<pre>
<blockquote>

<dl>
<dt>
<dd>
<figure>
<figcaption>
<div>
<a>

<small>

<cite>
<q>
<abbr>
<data>
<code>

…AND MANY
MANY MORE.

HTML > tag examples

A TAGcan also be referred to as an

ELEMENT. Here is a GREAT
resource list of HTML5 elements with
explanations of each one is used:

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/
HTML5/HTML5_element_list

HTML > attributes

A TAGcan also have

ATTRIBUTES:

Go to GMAIL

HTML > attributes

ATTRIBUTES are information
within the tag, defining the tag. Different
tags have different attribute options.

Go to GMAIL

HTML > values

AVALUE is what pinpoints the
ATTRIBUTE to more specific information.

Go to GMAIL

HTML > tag, attribute, value

In this example below, we have an <a>
tag, which is an “anchor” link. But we need
to know where the link will go, so we give it
an attribute, “href”, which stands for hyper-
reference. And that href will take us to the
value of “http://gmail.com” when clicked.
What the viewer sees as a clickable link is
inside the <a> tags, “Go to GMAIL”.

Go to GMAIL

HTML > nesting tags

To make pages, we have to “nest” TAGs:

<article>

 <header>
 <h1>How Cells Multiply</h1>
 </header>
 <p>Our cells are amazing. They really can
 multiply…</p>

</article>

HTML > nesting tags

…and nest them properly:

<p>

 Contact Us
</p>

<p>

 Contact Us</p>

SPEAKING OF
WHICH…
Let’s look at the basic, required
parts of any HTML page….

Minimum HTML5 requirements

<!DOCTYPE html>
<html>

 <head>
 <title>Title goes here</title>
 </head>

 <body>
 </body>

</html>

What is <!DOCTYPE> ???

<!DOCTYPE html>
<html>

 <head>
 <title>Title goes here</title>
 </head>

 <body>
 </body>

</html>

What is <!DOCTYPE> ???

<!DOCTYPE html>

The “doctype” announces to a browser which
version of HTML it is using. This helps the browser
know what to expect and how to behave.

Without a “doctype”, browsers go into “quirks
mode” and can interpret code unpredictably.

The <html> tag

<!DOCTYPE html>
<html>

 <head>
 <title>Title goes here</title>
 </head>

 <body>
 </body>

</html>

The <html> tag

<html>…</html>

The “html” tag represents the root of an
HTML or XHTML document. All other
elements (except “doctype”) must be
descendants of this element.

The <head> tag

<!DOCTYPE html>
<html>

 <head>
 <title>Title goes here</title>
 </head>

 <body>
 </body>

</html>

The <head> tag

<head><title>…</title></head>

The “head” tag contains a collection of
metadata about the document,
including links to, or definitions of, scripts
and style sheets. At a minimum, it MUST
contain a “title” tag.

The <title> tag

<!DOCTYPE html>
<html>

 <head>
 <title>Title goes here</title>
 </head>

 <body>
 </body>

</html>

The <title> tag

<title>Title goes here</title>

Defines the title of the document, shown
in a browser's title bar or on the page's
tab.
It can only contain text. Nested HTML
tags will not be interpreted.

Finally, the <body> tag

<!DOCTYPE html>
<html>

 <head>
 <title>Title goes here</title>
 </head>

 <body>
 </body>

</html>

Finally, the <body> tag

<body>…</body>

Contains the content of an HTML
document that is visually displayed in
the browser’s viewport/window.

There is only one <body> element in a
document.

A technical recap

 <!DOCTYPE html>
 <html>
 <head>
 <title>Title goes here</title>
 </head>

 <body>
 </body>
 </html>

A metaphorical recap

HTML tags are fairly intuitive. An easy way
to remember the basic parts is to humanize
a page:

Doctype = laws governing behavior
<html> = the whole person
<head> = the brain that gathers information
<title> = name / identity a person calls one’s self
<body> = the physical representation and

 behaviors of the person

SPEAKING OF
INTUITIVE…
Let’s talk about “SEMANTIC”
html markup.

SEMANTIC
adjective \si-ˈman-tik\

: of or relating to the meanings of
words and phrases

Semantic tags in HTML

•  HTML tags are imbued with meaning.
•  They should not be arbitrarily assigned.
•  They have meaning outside of visual

representation.
•  Visually impaired people can still

understand the meaning of sections in
a page with semantic markup.

•  Search engines can too.

A “semantic” case study

Imagine that you are reading a
newspaper but there are no headings,
no margins, no indents, no bold, no
italics, no paragraph separations, etc.

IT’S JUST TEXT…

A “semantic” case study

LIKE THIS:

A “semantic” case study

Without meaningful hierarchy, no one
would want to read through that page
because it would be a laborious
experience.

That is how search engines and blind
people experience pages with poor
semantic markup.

A “semantic” case study

SAME SITE, BUT BETTER EXPERIENCE:

An argument for semantics

This brings us to the importance of

STRUCTURE

vs.

PRESENTATION

Structure vs. Presentation

The STRUCTURE of an HTML
document should be a well-crafted
page that can be understood
semantically by search engines and
assistive devices like screen readers (aids
for the blind).

Structure vs. Presentation

Additionally, STRUCTURE
also incorporates the actual CONTENT of
the document (e.g. headings, article
text, links, pictures, video, etc).

Structure vs. Presentation

The PRESENTATION half
of the coin uses VISUAL STYLING to
communicate the semantics to people
not using screen readers.

This is accomplished by pairing CSS
with the structure.

Structure vs. Presentation

To make a point about STRUCTURE vs.
PRESENTATION, let’s revisit the page with no
semantic markup or structure at all:

Structure vs. Presentation

By simply adding semantic markup STRUCTURE
we can have a meaningful page readable by
search engines, screen readers, and even
people:

Structure vs. Presentation

Now let’s add CSS styling to it for better visual
PRESENTATION:

Structure vs. Presentation

So, you might ask:
Is there ever a time to use non-semantic
tags?

SURE.

<DIV>

The only two generic html tags that
have no semantic meaning at all.

<div> and

There are occasions when you need to
use generic tags for PRESENTATION
purposes and really don’t want a tag
container to have any special meaning.

That is when you use either <div> or
.

What’s the difference between
the two?
<div>
A “block-level” container tag.
“Block-level” elements take up the entire width of a line
unless otherwise specified in the CSS.

An “inline” container tag.
“Inline” elements take up only as much space as
necessary and can sit side-by-side with other “inline”
elements within a line.

<div> “block” example

<div>div example 1</div>
<div>div example 2</div>

 div example 1

div example 2

 “inline” example

span example 1
span example 2

 span example 1 span example 2

